Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 11(4): e1165379, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27018627

RESUMO

Plant NADPH oxidases are the major source of reactive oxygen species (ROS) that plays key roles as both signal and stressor in several plant processes, including defense responses against pathogens. ROS accumulation in root cells during arbuscular mycorrhiza (AM) development has raised the interest in understanding how ROS-mediated defense programs are modulated during the establishment of this mutualistic interaction. We have recently analyzed the expression pattern of 5 NADPH oxidase (also called RBOH) encoding genes in Medicago truncatula, showing that only one of them (MtRbohE) is specifically upregulated in arbuscule-containing cells. In line with this result, RNAi silencing of MtRbohE generated a strong alteration in root colonization, with a significant reduction in the number of arbusculated cells. On this basis, we propose that MtRBOHE-mediated ROS production plays a crucial role in the intracellular accommodation of arbuscules.


Assuntos
Medicago truncatula/enzimologia , Medicago truncatula/microbiologia , Micorrizas/fisiologia , NADPH Oxidases/metabolismo , Proteínas de Plantas/metabolismo , Simbiose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , Interferência de RNA
2.
Planta ; 243(1): 251-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26403286

RESUMO

MAIN CONCLUSION: Our study demonstrated that the NAPDH oxidase gene MtRbohE is expressed in arbusculated cells and plays a role in arbuscule development. Plant NADPH oxidases, known as respiratory burst oxidase homologs (RBOH), belong to a multigenic family that plays an important role in the regulation of plant development and responses to biotic and abiotic stresses. In this study, we monitored the expression profiles of five Rboh genes (MtRbohA, MtRbohB, MtRbohE, MtRbohG, MtRbohF) in the roots of the model species Medicago truncatula upon colonization by arbuscular mycorrhizal fungi. A complementary cellular and molecular approach was used to monitor changes in mRNA abundance and localize transcripts in different cell types from mycorrhizal roots. Rboh transcript levels did not drastically change in total RNA extractions from whole mycorrhizal and non-mycorrhizal roots. Nevertheless, the analysis of laser microdissected cells and Agrobacterium rhizogenes-transformed roots expressing a GUS transcriptional fusion construct highlighted the MtRbohE expression in arbuscule-containing cells. Furthermore, the down regulation of MtRbohE by an RNAi approach generated an altered colonization pattern in the root cortex, when compared to control roots, with fewer arbuscules and multiple penetration attempts. Altogether our data indicate a transient up-regulation of MtRbohE expression in cortical cells colonized by arbuscules and suggest a role for MtRbohE in arbuscule accommodation within cortical cells.


Assuntos
Regulação da Expressão Gênica de Plantas , Glomeromycota/fisiologia , Medicago truncatula/enzimologia , Micorrizas/fisiologia , NADPH Oxidases/genética , Genes Reporter , Glomeromycota/citologia , Microdissecção e Captura a Laser , Medicago truncatula/citologia , Medicago truncatula/genética , Medicago truncatula/microbiologia , Micorrizas/citologia , NADPH Oxidases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Simbiose , Regulação para Cima
3.
Biomed Res Int ; 2014: 207041, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25050327

RESUMO

The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed.


Assuntos
Simulação por Computador , Sistemas On-Line/instrumentação , Design de Software , Estatística como Assunto , Biologia de Sistemas/instrumentação , Bacteriófago lambda/fisiologia , Citosol/metabolismo , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Neurospora/metabolismo , Interface Usuário-Computador
4.
Brief Bioinform ; 15(5): 798-813, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23780997

RESUMO

The stochastic modelling of biological systems, coupled with Monte Carlo simulation of models, is an increasingly popular technique in bioinformatics. The simulation-analysis workflow may result computationally expensive reducing the interactivity required in the model tuning. In this work, we advocate the high-level software design as a vehicle for building efficient and portable parallel simulators for the cloud. In particular, the Calculus of Wrapped Components (CWC) simulator for systems biology, which is designed according to the FastFlow pattern-based approach, is presented and discussed. Thanks to the FastFlow framework, the CWC simulator is designed as a high-level workflow that can simulate CWC models, merge simulation results and statistically analyse them in a single parallel workflow in the cloud. To improve interactivity, successive phases are pipelined in such a way that the workflow begins to output a stream of analysis results immediately after simulation is started. Performance and effectiveness of the CWC simulator are validated on the Amazon Elastic Compute Cloud.


Assuntos
Armazenamento e Recuperação da Informação , Processos Estocásticos , Biologia de Sistemas , Biologia Computacional , Simulação por Computador
5.
Mycorrhiza ; 22(4): 259-69, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21744141

RESUMO

Nitric oxide (NO) is a signaling molecule involved in plant responses to abiotic and biotic stresses. While there is evidence for NO accumulation during legume nodulation, almost no information exists for arbuscular mycorrhizas (AM). Here, we investigated the occurrence of NO in the early stages of Medicago truncatula-Gigaspora margarita interaction, focusing on the plant response to fungal diffusible molecules. NO was visualized in root organ cultures and seedlings by confocal microscopy using the specific probe 4,5-diaminofluorescein diacetate. Five-minute treatment with the fungal exudate was sufficient to induce significant NO accumulation. The specificity of this response to AM fungi was confirmed by the lack of response in the AM nonhost Arabidopsis thaliana and by analyzing mutants impaired in mycorrhizal capacities. NO buildup resulted to be partially dependent on DMI1, DMI2, and DMI3 functions within the so-called common symbiotic signaling pathway which is shared between AM and nodulation. Significantly, NO accumulation was not induced by the application of purified Nod factor, while lipopolysaccharides from Escherichia coli, known to elicit defense-related NO production in plants, induced a significantly different response pattern. A slight upregulation of a nitrate reductase (NR) gene and the reduction of NO accumulation when the enzyme is inhibited by tungstate suggest NR as a possible source of NO. Genetic and cellular evidence, therefore, suggests that NO accumulation is a novel component in the signaling pathway that leads to AM symbiosis.


Assuntos
Glomeromycota/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Micorrizas/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...